Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(X), cons(Y, L)) → ACTIVATE(L)
LENGTH(cons(X, L)) → S(n__length(activate(L)))
ACTIVATE(n__0) → 01
ACTIVATE(n__s(X)) → S(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(X)
EQ(n__s(X), n__s(Y)) → ACTIVATE(X)
EQ(n__s(X), n__s(Y)) → EQ(activate(X), activate(Y))
LENGTH(cons(X, L)) → ACTIVATE(L)
INF(X) → S(X)
ACTIVATE(n__length(X)) → LENGTH(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(Y)
ACTIVATE(n__inf(X)) → INF(X)
EQ(n__s(X), n__s(Y)) → ACTIVATE(Y)
LENGTH(nil) → 01

The TRS R consists of the following rules:

eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(X), cons(Y, L)) → ACTIVATE(L)
LENGTH(cons(X, L)) → S(n__length(activate(L)))
ACTIVATE(n__0) → 01
ACTIVATE(n__s(X)) → S(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(X)
EQ(n__s(X), n__s(Y)) → ACTIVATE(X)
EQ(n__s(X), n__s(Y)) → EQ(activate(X), activate(Y))
LENGTH(cons(X, L)) → ACTIVATE(L)
INF(X) → S(X)
ACTIVATE(n__length(X)) → LENGTH(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(Y)
ACTIVATE(n__inf(X)) → INF(X)
EQ(n__s(X), n__s(Y)) → ACTIVATE(Y)
LENGTH(nil) → 01

The TRS R consists of the following rules:

eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(X), cons(Y, L)) → ACTIVATE(L)
LENGTH(cons(X, L)) → S(n__length(activate(L)))
ACTIVATE(n__0) → 01
ACTIVATE(n__s(X)) → S(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(X)
EQ(n__s(X), n__s(Y)) → ACTIVATE(X)
EQ(n__s(X), n__s(Y)) → EQ(activate(X), activate(Y))
LENGTH(cons(X, L)) → ACTIVATE(L)
INF(X) → S(X)
ACTIVATE(n__length(X)) → LENGTH(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(Y)
ACTIVATE(n__inf(X)) → INF(X)
EQ(n__s(X), n__s(Y)) → ACTIVATE(Y)
LENGTH(nil) → 01

The TRS R consists of the following rules:

eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 8 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
ACTIVATE(n__length(X)) → LENGTH(X)
TAKE(s(X), cons(Y, L)) → ACTIVATE(L)
TAKE(s(X), cons(Y, L)) → ACTIVATE(Y)
TAKE(s(X), cons(Y, L)) → ACTIVATE(X)
LENGTH(cons(X, L)) → ACTIVATE(L)

The TRS R consists of the following rules:

eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


ACTIVATE(n__take(X1, X2)) → TAKE(X1, X2)
TAKE(s(X), cons(Y, L)) → ACTIVATE(L)
TAKE(s(X), cons(Y, L)) → ACTIVATE(Y)
TAKE(s(X), cons(Y, L)) → ACTIVATE(X)
LENGTH(cons(X, L)) → ACTIVATE(L)
The remaining pairs can at least be oriented weakly.

ACTIVATE(n__length(X)) → LENGTH(X)
Used ordering: Combined order from the following AFS and order.
ACTIVATE(x1)  =  x1
n__take(x1, x2)  =  n__take(x1, x2)
TAKE(x1, x2)  =  TAKE(x1, x2)
n__length(x1)  =  x1
LENGTH(x1)  =  x1
s(x1)  =  x1
cons(x1, x2)  =  cons(x1, x2)

Recursive path order with status [2].
Quasi-Precedence:
ntake2 > TAKE2

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ DependencyGraphProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

ACTIVATE(n__length(X)) → LENGTH(X)

The TRS R consists of the following rules:

eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 0 SCCs with 1 less node.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ EdgeDeletionProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

EQ(n__s(X), n__s(Y)) → EQ(activate(X), activate(Y))

The TRS R consists of the following rules:

eq(n__0, n__0) → true
eq(n__s(X), n__s(Y)) → eq(activate(X), activate(Y))
eq(X, Y) → false
inf(X) → cons(X, n__inf(s(X)))
take(0, X) → nil
take(s(X), cons(Y, L)) → cons(activate(Y), n__take(activate(X), activate(L)))
length(nil) → 0
length(cons(X, L)) → s(n__length(activate(L)))
0n__0
s(X) → n__s(X)
inf(X) → n__inf(X)
take(X1, X2) → n__take(X1, X2)
length(X) → n__length(X)
activate(n__0) → 0
activate(n__s(X)) → s(X)
activate(n__inf(X)) → inf(X)
activate(n__take(X1, X2)) → take(X1, X2)
activate(n__length(X)) → length(X)
activate(X) → X

Q is empty.
We have to consider all minimal (P,Q,R)-chains.